Set | Set | Math | Logic | Prog | Bool | door | table |
---|---|---|---|---|---|---|---|
∩ | ![]() |
∧ | AND | && | • | ![]() |
00 0 01 0 10 0 11 1 |
∪ | ![]() |
∨ | OR | || | + | ![]() |
00 0 01 1 10 1 11 1 |
Δ | ![]() |
⊖ | XOR | ⊕ | ![]() |
00 0 01 1 10 1 11 0 |
|
![]() |
XNOR | ⊙ | ![]() |
00 1 01 0 10 0 11 1 |
A | ||
0 | 1 | |
B | 2 | 3 |
A | ||||
0 | 2 | 3 | 1 | |
C | 4 | 6 | 7 | 5 |
B |
A | |||||
0 | 4 | 12 | 8 | ||
1 | 5 | 13 | 9 | D | |
C | 3 | 7 | 15 | 11 | |
2 | 6 | 14 | 10 | ||
B |
fonction
\[ f(x) \]
![]() |
opposée
\[ -f(x) \]
![]() |
?
\[ f(-x) \]
![]() |
réciproque ("inverse")
\[f^{-1}(x)\]
![]() |
\[ f(x) \] | Injective | |
---|---|---|
\[ x^2 \]
![]() |
\[ e^x \]
![]() |
|
Surjective |
\[ x^3-x \]
![]() |
\[ x^3 \]
![]() |
\[ f(x) = \] | \[ 0 \] | \[ 3.7 \] | \[ 2x \] | \[ 3x + 4 \] | \[ x \] | \[ e^x \] | \[ x^3 -x \] | \[ x^3 \] | |||
nulle | constante | linéraire | affine | monotone | injective | surjective | bijective |
---|
bool | scalaire | vecteur | matrice | ensemble | fonction | relation | |||
---|---|---|---|---|---|---|---|---|---|
\[ + \] | \[ a + b \] | \[ A + B \] | OU | addition | addition | addition | addition | addition | addition |
\[ \] | \[ ab \] | \[ AB \] | ET | produit | produit scalaire | produit | produit cartésien | produit | |
\[ \cdot \] | \[ a \cdot b \] | \[ A \cdot B \] | ET | produit | produit scalaire | produit | produit cartésien | produit | \[ \] |
\[ \times \] | \[ a \times b\] | \[ A \times B \] | ET | produit | produit vectoriel* | produit | produit cartésien | produit | \[ \] |
\[ ^{-1} \] | \[ a^{-1} \] | \[ A^{-1} \] | inverse | inverse | inverse | réciproque | inverse | ||
\[ ' \] | \[ a' \] | \[ \] | dérivée | ||||||
\[ \circ \] | \[ a \circ b \] | \[ A \circ B \] | \[ \] | \[ \] | \[ \] | produit de Hadamard | \[ \] | composition | composition |
\[ || \] | \[ |a| \] | \[ |A| \] | \[ \] | valeur absolue | (magnitude) | déterminant | cardinal | cardinal | |
\[ \hat{} \] | \[ \hat{a} \] | \[ \] | \[ \] | normalisé | |||||
\[ ||~|| \] | \[ ||a|| \] | \[ \] | \[ \] | magnitude | |||||
\[ \overline{} \] | \[ \overline{a} \] | \[ \overline{A} \] | moyenne | \[ \] | augmentée | complément | complément | ||
\[ \cup \] | \[ \] | \[ A \cup B \] | \[ \] | \[ \] | union | union | |||
\[ \cap \] | \[ \] | \[ A \cap B \] | \[ \] | \[ \] | intersection | intersection | |||
\[ \bigtriangleup \] | \[ \] | \[ A \bigtriangleup B \] | \[ \] | \[ \] | \[ \] | différence exclusive | différence exclusive |
\[ A \in B \] | A est dans B |
\[ A \subseteq B \] | A est faisable avec B |
a | b | c |
a | b | c | |
---|---|---|---|
a | (a,a) | (a,b) | (a,c) |
b | (b,a) | (b,b) | (b,c) |
c | (c,a) | (c,b) | (c,c) |
a | b | c | |
---|---|---|---|
∅ | |||
✔ | {c} | ||
✔ | {b} | ||
✔ | ✔ | {b, c} | |
✔ | {a} | ||
✔ | ✔ | {a, c} | |
✔ | ✔ | {a, b} | |
✔ | ✔ | ✔ | {a, b, c} |
1 | 2 | 3 |
4 | 5 | 6 |
1 | 2 | 3 |
1 |
2 |
3 |
0 | ||
0 | 0 |
0 | 0 | |
0 | ||
0 | 0 | |
0 | 0 | |
0 | 0 |
1 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 1 |
0 | 0 | 0 |
0 | 0 | 0 |
0 | 0 | 0 |
1 | 2 | 3 |
4 | 5 | 6 |
1 | 4 |
2 | 5 |
3 | 6 |
\[ \begin{aligned} & \text{Pour des matrices de même dimensions} \\ & \text{Pour } A^{-k} \text{ il faut que A soit inversible} \end{aligned} \] | ||||
---|---|---|---|---|
\[ \text{Déterminant} \\ \Rightarrow \text{matrice carrée} \] | ||||
\[ A ~~ \otimes ~~ (B \otimes C) \quad = \quad (A \otimes B) ~~ \otimes ~~ C \] | ||||
\[ A + B = B + A \] | \[ (A + B)^T = A^T + B^T \] | \[ \] | ||
\[ A B \neq B A \] | \[ (AB)^T = B^TA^T \] | \[ (AB)^{-1} = B^{-1}A^{-1} \] | \[ |AB| = |A||B| \] | |
\[ \lambda A = A \lambda \] | \[ (\lambda A)^T = \lambda A^T \] | \[ |\lambda A| = \lambda^n |A| \] | \[ |A| = |A^T| \] | |
\[ AI = IA = A \] | \[ AA^{-1} = A^{-1}A = I \] | |||
\[ (A^n)^m = A^{nm} \] | \[ (A^T)^T = A \] | \[ (A^k)^T = (A^T)^k \] | \[ |A^k| = |A|^k \] | |
\[ A \text{ inversible } \Rightarrow \quad A^T \text{ inversible }, \quad \lambda A^k \text{ inversible } \] | ||||
\[ \begin{aligned} & L_x = L_y \quad \text{ou} \quad C_x = C_y \quad && \Rightarrow |A| = 0 \\[1em] & L_x = 0 \quad \text{ou} \quad C_x = 0 \quad && \Rightarrow |A| = 0 \\ & \text{matrice triangulaire} && \Rightarrow |A| = \prod_{k=1}^n a_{kk} \end{aligned} \] | ||||
\[ \begin{aligned} & \text{opérations sur les lignes} \\[1em] & \lambda L_x && \Rightarrow && \lambda |A| \\ & L_x + k L_y && \Rightarrow && \lambda |A| \\ & L_x \Longleftrightarrow L_y && \Rightarrow && -|A| \end{aligned}\] | ||||
\[ \begin{aligned} & A^{-1} = \frac{1}{|A|}C^T \end{aligned} \] |
\[ \vec{b} = 0 \] | \[ \vec{b} \neq 0 \] | ||
---|---|---|---|
\[ |A| = 0 \] | \[ \infty \] | \[ 0 ~ ou ~ \infty \] | \[ \red{\sout{A^{-1}}} \] |
\[ |A| \neq 0 \] | \[ \vec{x} = 0 \] | \[ \vec{x} = A^{-1}\vec{b} \] | \[ A^{-1} \] |
\[ homogène \] | \[ inhomogène \] |
Exemple de matrice échelonnée réduite :
\[ R \] | x | y |
---|---|---|
a | ||
b | ✔ | |
c | ✔ | ✔ |
1 | ||
1 | ||
1 |
● | ▲ | |
● | ■ | |
▲ | ■ |
● | ▲ | |
○ | ■ | |
△ | □ |
1 | 1 | 1 |
0 | 1 | 1 |
0 | 0 | 1 |
Refl. | Sym. | Ant. | Tran. | Tout. | exemple classique |
|
---|---|---|---|---|---|---|
relation d'ordre total | ✔ | ✔ | ✔ | ✔ | \[ \le \] | |
relation d'ordre partiel | ✔ | ✔ | ✔ | \[ \subseteq \] | ||
relation d'équivalence | ✔ | ✔ | ✔ | ~ | \[ = \] |
Vide = 0 (pour la lisibilité)
En blanc : cette valeur et aucune autre
Vide : n'importe quelle valeur
Forme pleine et même forme pleine = même valeur
Forme pleine et même forme vide = valeur opposée
En vert, cette valeur ou 0
En bleu, valeurs exemples
1 | ||||
1 | 1 | |||
1 | 1 | |||
1 | 1 | |||
1 | 1 | 1 | 1 |
1 | ||||
2 | 2 | |||
2 | 2 | |||
2 | 1 | |||
2 | 3 | 3 | 1 |
1 | ||||
1 | 1 | |||
1 | 1 | |||
1 | 1 | |||
1 | 1 | 1 | 1 |
\[ k \ge 1 \quad a_0 \in \mathbb{R} \] | \[ S(n) = \] | |||
---|---|---|---|---|
formule récursive |
formule directe |
\[ \sum_{k=i}^{n} (a_k) \] | \[ \sum_{k=i}^{\infin} (a_k) \] | |
arithmétique | \[ a_k = a_{k - 1} + r \] | \[ a_k = a_0 + r \cdot k \] | \[ \begin{aligned} nbt \cdot \frac{p + d}{2} \end{aligned} \] | |
géométrique | \[ a_k = a_{k - 1} \cdot r \] | \[ a_k = a_0 \cdot r^k \\[1em] \] | \[ \frac{p - d \cdot r}{1 - r} \\[1em] \] | \[ \frac{a_0}{1 - r} \] |
\[ \bigoplus \] | \[ \sum \] | \[ \prod \] |
---|---|---|
\[ \bigoplus_{k=1}^n (c) \] | \[ n c \] | \[ c^n \] |
\[ \bigoplus_{k=1}^n (k) \] | \[ \frac{n (n + 1)}{2} \] | \[ n! \] |
\[ \bigoplus_{k=1}^n (a_k \cdot c) \] | \[ c \cdot \sum_{k=1}^n (a_k) \] | \[ c^n \cdot \prod_{k=1}^n (a_k) \] |
\[ \bigoplus_{k=i}^n \bigoplus_{l=j}^m (a_k \cdot b_l) = \bigoplus_{k=i}^n (a_k) \cdot \bigoplus_{l=j}^m (b_l) \\[1em] \] | ||
\[ \begin{aligned} \bigoplus_{k=i}^n (a_k \oplus b_k) \quad = \quad \bigoplus_{k=i}^n (a_k) ~ \oplus ~ \bigoplus_{k=i}^n (b_k) \end{aligned} \] | ||
\[ \begin{aligned} \orange{\bigoplus_{k=i}^n} \blue{\bigotimes_{l=j}^m} (a_{\orange{i} \blue{j}}) \quad = \quad \blue{\bigotimes_{l=j}^m} \orange{\bigoplus_{k=i}^n} (a_{\orange{i} \blue{j}}) \end{aligned} \] | ||
\[ \begin{aligned} & \bigoplus_{i = 1}^n \bigoplus_{\orange{j = i}}^n (a_{ij}) \quad = \quad \bigoplus_{j = 1}^n \bigoplus_{i = 1}^\orange{j} (a_{ij}) \end{aligned} \] |
Attention à ajouter la constante
Primitive | Fonction | Dérivée |
---|---|---|
\[ \frac{a\blue{x}^{b + 1}}{b + 1} + c\blue{x} \] | \[ a \blue{x}^b + c \] | \[ b a \blue{x}^{b - 1} \] |
\[ \frac{a b^{c \blue{x} + d}}{c ~ ln(b)} + e \blue{x}\] | \[ ab^{c\blue{x} + d} + e \] | \[ cab^{c\blue{x} +d} ln(a) \] |
\[ \frac{\blue{x} log_a(\blue{x})}{ln(a)} \] | \[ log_a( \blue{x} ) \] | \[ \frac{1}{ \blue{x} ln(a)} \] |
\[ \] | \[ \blue{x}^{\blue{x}} \] | \[ \blue{x}^{\blue{x}}ln(\blue{x} + 1) \] |
Fonction | Dérivée |
---|---|
\[ a \cdot f(\blue{x}) \] | \[ a \cdot f'(\blue{x}) \] |
\[ f(\blue{x} )\green±g(\blue{x} )\] | \[ f'(\blue{x} )\green±g'(\blue{x} )\] |
\[ f(\blue{x}) \cdot g(\blue{x}) \] | \[ f'(\blue{x}) \cdot g(\blue{x}) + f(\blue{x}) \cdot g'(\blue{x} )\] |
\[ \frac{f(\blue{x})}{g(\blue{x})} \] | \[ \frac{f'(\blue{x}) g(\blue{x}) - f(\blue{x}) g'(\blue{x})}{(g(\blue{x}))^2} \] |
\[ f(g(h(\blue{x}))) \] | \[ f'(g(h(\blue{x}))) \cdot g'(h(\blue{x})) \cdot h'(\blue{x}) \] |
\[ f^{-1}(\blue{x}) \] | \[ \frac{1}{f'(f^{-1}(\blue{x}))} \] |
Fonction | Dérivée | Fonction | Dérivée | |
---|---|---|---|---|
\[ sin(\blue{x}) \] | \[ cos(\blue{x}) \] | \[ cos(\blue{x}) \] | \[ -sin(\blue{x} )\] | |
\[ tan(\blue{x}) \] | \[ 1 + tan^2(\blue{x}) \] | \[ cot(\blue{x}) \] | \[ -(1 + cot^2(\blue{x})) \] | |
\[ sec(\blue{x}) \] | \[ sec(\blue{x})tan(\blue{x}) \] | \[ csc(\blue{x}) \] | \[ -csc(\blue{x})cot(\blue{x}) \] | |
\[ sin^{-1}(\blue{x}) \] | \[ \frac{1}{\sqrt{1 - x^2}} \] | \[ cos^{-1}(\blue{x}) \] | \[ -\frac{1}{\sqrt{1 - x^2}} \] | |
\[ tg^{-1}(\blue{x}) \] | \[ \frac{1}{1 + \blue{x}^2} \] | \[ cot^{-1}(\blue{x}) \] | \[ -\frac{1}{1 + \blue{x}^2} \] | |
\[ sec^{-1}(\blue{x}) \] | \[ \frac{1}{|\blue{x}|\sqrt{\blue{x}^2 - 1}} \] | \[ csc^{-1}(\blue{x}) \] | \[ -\frac{1}{|\blue{x}|\sqrt{\blue{x}^2 - 1}} \] |
Intégrales simples | |
---|---|
Fonction | Dérivée |
\[ \frac{1}{3} \blue{u}^3 \] | \[ \blue{u}^2 \blue{u}' \] |
\[ \frac{1}{2} \blue{u}^2 \] | \[ \blue{u} \blue{u}' \] |
\[ \blue{u} \] | \[ \blue{u}' \] |
\[ ln(\blue{u}) \] | \[ \frac{\blue{u}'}{\blue{u}} \] |
\[ - \frac{1}{\blue{u}} \] | \[ \frac{\blue{u}'}{\blue{u}^2} \] |
\[- \frac{1}{2\blue{u}^2} \] | \[ \frac{\blue{u}'}{\blue{u}^3} \] |
Intégrales utiles | |
---|---|
Fonction | Dérivée |
\[ \blue{x} ~ ln(\blue{x}) - x \] | \[ ln(\blue{x}) \] |
\[ ln(\blue{u}^n) \] | \[ \frac{n}{\blue{u}} \] |
\[ atg(\blue{u}) \] | \[ \frac{\blue{u}'}{1 + \blue{u}^2} \] |
\[ \frac{1}{a} atg(\frac{\blue{u}}{a}) \] | \[ \frac{\blue{u}'}{a^2 + \blue{u}^2} \] |
\[ (\blue{u} \blue{v})' - \blue{u}' \blue{v} \] | \[ \blue{u} \blue{v}' \] |
\[ t(\blue{x}) = f(x_0) + f'(x_0)(\blue{x} - x_0) \] | \[ \begin{aligned} & \text{linéarisation en } x_0 \\ & \text{fonction de la tangente en } x_0 \end{aligned}\] |
\[ \begin{aligned} & T_1(\blue{x}) = f(x_0) + f'(x_0)(\blue{x} - x_0) + o(x) \\[2em] & T_2(\blue{x}) = f(x_0) + f'(x_0)(\blue{x} - x_0) + \frac{f''(x_0)}{2!}(\blue{x}-x_0) + o(x^2) \\[2em] & T_3(\blue{x}) = f(x_0) + f'(x_0)(\blue{x} - x_0) + \frac{f''(x_0)}{2!}(\blue{x}-x_0) + \frac{f'''(x_0)}{3!}(\blue{x}-x_0) +o(x^3) \end{aligned}\] | |
\[ T_n(\blue{x}) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (\blue{x} - x_0)^k + R_n(x) \] | Formule générale |
\[ \gray{\tau = 2 \pi} \] | \[ 0 \] | \[ \frac{\tau}{12 }\] | \[ \frac{\tau}{8} \] | \[ \frac{\tau}{6} \] | \[ \frac{\tau}{4} \] |
\[ sin \] | \[ \frac{\sqrt{\green{0}}}{2} \] | \[ \frac{\sqrt{\green{1}}}{2} \] | \[ \frac{\sqrt{\green{2}}}{2} \] | \[ \frac{\sqrt{\green{3}}}{2} \] | \[ \frac{\sqrt{\green{4}}}{2} \] |
\[ cos \] | \[ \frac{\sqrt{\green{4}}}{2} \] | \[ \frac{\sqrt{\green{3}}}{2} \] | \[ \frac{\sqrt{\green{2}}}{2} \] | \[ \frac{\sqrt{\green{1}}}{2} \] | \[ \frac{\sqrt{\green{0}}}{2} \] |
\[ tan \] | \[ 0 \] | \[ \frac{1}{\sqrt{\green{3}}} \] | \[ 1 \] | \[ \frac{\sqrt{\green{3}}}{1} \] | \[ - \] |
Ensemble | Set | {1, 3, 4, 7} | |
---|---|---|---|
Somme | Sum | 15 | \[\sum_{i=1}^{n}x_i\] |
Moyenne | Average | 3.75 | \[\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i\] |
Mode | Mode | nul | |
Etendue | Range | 6 | \[x_{max}- x_{min}\] |
Ecart Moyen | Mean Deviation | 1.75 | \[\frac{1}{n} \sum_{i=1}^{n} |x_i - \bar{x}|\] |
Variance | Variance | \[V = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2\] | |
Ecart Type | Standard Deviation | \[\sigma = \sqrt{V} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2}\] | |
Autres | |||
Somme des Ecarts | Sum of Deviations | \[\sum_{i=1}^{n} |x_i - \bar{x}|=0\] | |
Somme des Carres des Ecarts | Sum of Squared Deviations | \[\sum_{i=1}^{n} (x_i - \bar{x})^2\] |